А.И.
Орлов
Теория принятия решений
Учебное пособие. - М.: Издательство "Март", 2004.
Предыдущая |
4. МОДЕЛИРОВАНИЕ В ТЕОРИИ ПРИНЯТИИ РЕШЕНИЙ
4.5. МОДЕЛИРОВАНИЕ И ОЦЕНКА РЕЗУЛЬТАТОВ ВЗАИМОВЛИЯНИЙ ФАКТОРОВ
4.5.3. Компьютерная система ЖОК поддержки анализа и управления в сложных ситуациях[1]
Основные сведения о системе ЖОК. Компьютерная система ЖОК предназначена для структуризации и анализа сложных, трудно формализуемых, слабо структурированных задач различной природы (экономической, управленческой, прогностической, технической, медицинской, социально-политической, экологической и пр.). Она применяется для построения моделей ситуаций на основе описания влияний факторов с помощью ориентированных графов и использования оценок экспертов с последующим определением наиболее эффективных управленческих решений. Компьютерная система ЖОК:
- поддерживает аналитическое обоснование подходов к решению исследуемых проблем;
- позволяет спрогнозировать развитие моделируемой реальной системы; оценить результаты целенаправленного изменения тех или иных факторов;
- дает возможность выработать условия для целенаправленного поведения в исследуемой ситуации;
- обеспечивает возможность решения прямых и обратных задач управления.
Для построения модели изучаемого явления или процесса компьютерная система ЖОК предусматривает выделение основных факторов, описывающих реальную ситуацию, и установление непосредственных взаимосвязей между факторами в виде построения ориентированного взвешенного графа. Опосредованные взаимовлияния и итоговое стационарное состояние рассчитываются по описанным ниже алгоритмам. Система позволяет анализировать три основных типа сценариев:
сценарий “Прогноз”, позволяющий проследить “естественное” развитие моделируемой системы при отсутствии активных воздействий;
сценарий типа “Активный”, при котором работающий с системой специалист изменяет значения тех или иных параметров и анализирует получающуюся динамику и итоговое состояние (например, с целью ручного поиска рационального управления);
сценарий типа “Цель”, когда компьютерная система по заданной цели управления (например, значения определенных параметров должны быть не менее заданных) находит оптимальные воздействия путем решения соответствующей задачи оптимизации, в частности, проводит анализ принципиальной достижимости указанной цели из текущего состояния с использованием выбранных мероприятий (управлений).
Ядром компьютерной системы ЖОК является описанная ниже математическая модель. Преобразование задач анализа реальных явлений и процессов к математической постановке, оценка адекватности реальности и ее модели, процесс выбора управлений, процесс сравнительного анализа различных ситуаций в целом, моделирования и последующей интерпретации результатов математического моделирования относится к области “ручного труда” специалиста в соответствующей области знания и полной автоматизации, как правило, не поддается.
Некоторые особенности математической модели и основных алгоритмов компьютерной системы ЖОК. Компьютерная система ЖОК обеспечивает расчет равновесного (стационарного) состояния, к которому будет стремиться система взаимовлияющих факторов, и всех промежуточных состояний на пути от начального состояния к равновесному. В систему включены три варианта расчетов:
- расчет равновесного состояния без управления (учитываются только начальные данные);
- расчет равновесного состояния с управлением импульсного типа (при t = 0). (В такой модели система интерпретирует импульсное управление, как поправку к начальным данным.);
- расчет величины управления по заданным значениям величины приращения целевых факторов.
Первая версия системы ЖОК имеет некоторые ограничения. Она пока не позволяет определять управляющие воздействия как функции времени. Не предусмотрено изменение с течением времени самого множества управляющих факторов. Отсутствует понятие инертности факторов, что (при использовании физических аналогий) делает модель скорее кинематической, чем динамической. Шагом дискретного времени в модели принимается один такт, в течении которого любой фактор-аргумент оказывает определенные влияния (равные весам соответствующих дуг в графе) на все непосредственно зависимые от него факторы-функции. В дальнейших версиях системы эти недостатки будут устраняться.
Математические алгоритмы исследовательской системы ЖОК. Используются следующие обозначения:
n - количество вершин в ориентированном графе G модели, т.е. число используемых в модели факторов;
- матрица порядка n х n непосредственных влияний факторов (матрица смежности графа G);
- матрица, транспонированная к матрице (называемая матрицей непосредственных контрвлияний факторов);
t – время, принимающее дискретные значения 0,1,2,3,…
вектор , t=0,1,2,3,…, - вектор изменений (приращений, дифференциалов) факторов в момент дискретного времени t;
вектор , t=0,1,2,3,…, является вектором дифференциалов факторов второго порядка в момент дискретного времени t;
вектор обозначает величины предельных стационарных изменений (дифференциалов) факторов при безграничном росте t (очевидно, что если существует, то
);
вектор
|
вектор обозначает сравнительную важность факторов , задаваемую экспертным путем;
вектор обозначает отношение составителя модели к направлению изменения величин факторов (+1 – рост значения фактора оценивается положительно, (-1) – отрицательно, 0 – нейтрально);
- единичная n´n матрица (на главной диагонали стоят 1, на остальных позициях – 0);
- прореженная единичная n´n матрица, в которой единицы стоят на диагонали только на тех позициях, которые соответствуют целевым факторам. Очевидно, что является проектором на координатную плоскость целевых факторов, и следовательно , матрица является псевдообратной к матрице ;
- прореженная единичная n´n матрица, в которой единицы стоят на диагонали только на тех позициях, которые соответствуют управляющим факторам. Очевидно, что является проектором на координатную плоскость управляющих факторов, и, следовательно , матрица является псевдообратной к матрице ;
- резольвента, где
- множитель-стабилизатор, который используется в целях обеспечения достаточно устойчивой и быстрой сходимости итерационного процесса приближенного вычисления матрицы резольвентного оператора
,
где p достаточно велико;
в том случае, если собственные числа матрицы достаточно малы (обычно принимается, что должна иметь собственные числа не только меньше единицы, но и меньше 0.9). Поскольку стабилизатор имеет лишь внутриматематический смысл и не используется при построении модели и интерпретации результатов расчетов, то в дальнейшем его не будем упоминать, предполагая по умолчанию .
Система уравнений в математической модели. Для описания динамики факторов в компьютерной системе ЖОК используется математическая модель в виде системы линейных конечноразностных рекуррентных уравнений на трехточечном шаблоне {t-1, t, t+1} следующего вида:
(1),
с начальными условиями
(2),
где i = 1,2, ... , n , t = 0, 1, 2, ...
Для рекуррентного уравнения на трехточечном шаблоне необходимо задать начальные условия при t = 0 ( ), и при t = 1 ( ). Следовательно, первым уравнением цепочки рекуррентных уравнений (1) будет уравнение при t = 1.
При t = 1 уравнение полагается определенным и имеет вид
Для t = 0 уравнение определяется посредством соотношения
(3),
и тогда недостающие начальные данные вычисляются из уравнения
(4)
Заметим, что доопределение начальных данных нулем - всего лишь один из способов. В частности, если положить , то результаты вычислений будут другими.
Из уравнений (1) видно, что используемая модель предполагает, что за один шаг дискретного времени (Dt=1) происходит распространение влияния факторов-аргументов только на непосредственно от них зависящие факторы-функции. Времени можно придать содержательный смысл, если за шаг принять реальный интервал времени, необходимый для осуществления непосредственного влияния одного фактора на другой. Этот интервал может быть оценен экспертно, В ряде случаев его можно принять равным кварталу.
Уравнение (1) - (2) в векторной форме имеет вид
(5)
, (6)
где t = 0,1,2,...Решение задачи (5)-(6) определяются формулой
(7).
Стационарное состояние и начальные условия. Стационарное состояние вычисляется приближенно при . Для практических расчетов достаточно принять, что .
|
(8)
, (9)
где t = 0, 1, 2, ...
Решение уравнения (8) – (9) имеет вид
(10).
Если просуммировать уравнения (8) при t = 0, 1, 2, . . . , то получим (при условии сходимости)
(11),
откуда следует
(12)
Если же просуммировать уравнения (8) при t = 1, 2, . . . , то получим (при условии сходимости)
, (13)
и соответственно
(14),
откуда видно, что при выборе начальных условий вида результат (14) отличается от (12).
В частности, при выборе режима прогноза развития ситуации без управления и выборе начальных условий , которые выражают равенство нулю вторых производных от величин факторов при t = 0, из формулы (14) получим . что означает, что никакого развития ситуации не происходит и она продолжает двигаться “равномерно и прямолинейно”, поскольку вторые дифференциалы факторов равны нулю и первые дифференциалы факторов не изменяются во времени.
С другой стороны формула (12) предполагает, что начальные данные оказывают такое же ударное воздействие в момент t = 0, как и внешнее импульсное при t = 0 управление, играющее роль и имеющее “размерность” “механической силы”.
Если предполагается использование только импульсных управляющих воздействий при t = 0 и в дальнейшем , то задача развития ситуации без управления и с управлением не отличаются друг от друга, поскольку управление в сущности играет роль поправки к начальным данным и, обратно, начальные данные выполняют роль поправки к управлению.
Режим поиска управления по целевым значениям факторов. Проекция стационарного решения (12) уравнения (8)-(9) на координатную плоскость целевых факторов может быть представлено в виде
,
где
, ,
или иначе
(15).
Пусть - вектор значений дифференциалов целевых факторов, тогда импульсное управление определяется по формуле
(16),
где “+” обозначает операцию псевдоинверсии, и матрица является псевдообратной к матрице ;
является результатом применения к вектору операции - ограничения числовых значений компонент вектора величинами +1 и -1 , если эти значения выходят за пределы отрезка [-1; +1];
получается из применением операции - замены числовых значений ближайшими к ним экстремальными на отрезке [-1; +1] величинами +1 или -1 соответственно.
Тогда стационарные решения, получаемые с использованием этих управлений, вычисляются по формулам
,
.
Степени матрицы смежности графа G и опосредованные взаимовлияния факторов. Пусть вершина x1 влияет на вершину x2 с силой 0.5, вершина x2 влияет на x4 с силой 0.6, вершина x1 влияет на x3 с силой 0.8, вершина x3 влияет на x4 с силой 0.4. Тогда опосредованное суммарное влияние x1 на x4 имеет силу 0.5*0.6 + 0.8*0.4 = 0.62, что равно сумме весов двух путей x1-x2-x4 и x1-x3-x4 из x1 в x4, веса которых равны соответственно 0.5*0.6 = 0.3 и 0.8*0.4 = 0.32 . Суммарная сила влияния одного фактора на другой равна сумме весов всех маршрутов в ориентированном графе G из одного фактора в другой. Вес пути (маршрута) определяется как произведение весов дуг составляющих этот путь (маршрут). Указанный алгоритм расчета опосредованных взаимовлияний в случае необходимости может быть скорректирован с целью адекватного учета взаимоотношений факторов в дальнейших версиях системы.
Если рассмотреть степени матрицы , то их элементам можно придать вполне определенный смысл.
Так, например, элемент матрицы с координатами (1,2) равен сумме весов всех маршрутов из x1 в x2, содержащих ровно две дуги, а в сумме весов всех маршрутов из x1 в x2, содержащих ровно три дуги и т.д.
Таким образом матрица выражает суммарные опосредованные влияния факторов друг на друга с учетом рефлексивного (m = 0) непосредственного влияния фактора на самое себя с силой +1, а матрица не учитывает рефлексивного непосредственного влияния.
Матрица является матрицей контрвлияний факторов с учетом рефлексивности, а матрица
-
матрицей контрвлияний факторов без учета рефлексивности.
Отдельный интерес представляет собой матрица знаков элементов матрицы , т.е. матрица направленности интегральных влияний фактора на фактор (или контрвлияний, если рассмотреть матрицу ).
[1] В этом разделе использованы разработки В.Н.Жихарева.
Предыдущая |