А.И.
Орлов
Математика случая
Вероятность и статистика – основные факты
Учебное пособие. М.: МЗ-Пресс, 2004.
Предыдущая |
6. Некоторые типовые задачи прикладной статистики и методы их решения
Непараметрическое оценивание функции распределения
Второй пример непараметрического оценивания – оценивание функции распределения. По теореме Гливенко эмпирическая функция распределения Fn(x) является состоятельной оценкой функции распределения F(x). Если F(x) – непрерывная функция, то на основе теоремы Колмогорова доверительные границы для функции распределения F(x) задают в виде
(F(x))Н = max , (F(x))B = min ,
где k(γ,n) – квантиль порядка γ распределения статистики Колмогорова при объеме выборки n (напомним, что распределение этой статистики не зависит от F(x)).
Правила определения оценок и доверительных границ в параметрическом случае строятся на основе параметрического семейства распределений F(x;θ). При обработке реальных данных возникает вопрос – соответствуют ли эти данные принятой вероятностной модели? Т.е. статистической гипотезе о том, что результаты наблюдений имеют функцию распределения из семейства {F(x;θ), θΘ} при некотором θ = θ0? Такие гипотезы называют гипотезами согласия, а критерии их проверки – критериями согласия.
Если истинное значение параметра θ = θ0 известно, функция распределения F(x;θ0) непрерывна, то для проверки гипотезы согласия часто применяют критерий Колмогорова, основанный на статистике
где Fn(x) – эмпирическая функция распределения.
Если истинное значение параметра θ0 неизвестно, например, при проверке гипотезы о нормальности распределения результатов наблюдения (т.е. при проверке принадлежности этого распределения к семейству нормальных распределений), то иногда используют статистику
Она отличается от статистики Колмогорова Dn тем, что вместо истинного значения параметра θ0 подставлена его оценка θ*.
Распределение статистики Dn(θ*) сильно отличается от распределения статистики Dn. В качестве примера рассмотрим проверку нормальности, когда θ = (m, σ2), а θ* = (, s2). Для этого случая квантили распределений статистик Dn и Dn(θ*) приведены в табл.1 (см., например, [15]). Таким образом, квантили отличаются примерно в 1,5 раза.
Таблица 1.
Квантили статистик Dn и Dn(θ*) при проверке нормальности
р |
0,85 |
0,90 |
0,95 |
0,975 |
0,99 |
Квантили порядка р для Dn |
1,138 |
1,224 |
1,358 |
1,480 |
1,626 |
Квантили порядка р для Dn(θ*) |
0,775 |
0,819 |
0,895 |
0,955 |
1,035 |
Предыдущая |