А.И.
Орлов
Математика случая
Вероятность и статистика – основные факты
Учебное пособие. М.: МЗ-Пресс, 2004.
Предыдущая |
6. Некоторые типовые задачи прикладной статистики и методы их решения
Непараметрическое оценивание математического ожидания
В непараметрической постановке оценивают либо характеристики случайной величины (математическое ожидание, дисперсию, коэффициент вариации), либо ее функцию распределения, плотность и т.п. Так, в силу закона больших чисел выборочное среднее арифметическое является состоятельной оценкой математического ожидания М(Х) (при любой функции распределения F(x) результатов наблюдений, для которой математическое ожидание существует). С помощью центральной предельной теоремы определяют асимптотические доверительные границы
(М(Х))Н = , (М(Х))В = .
где γ – доверительная вероятность, - квантиль порядка стандартного нормального распределения N(0;1) с нулевым математическим ожиданием и единичной дисперсией, - выборочное среднее арифметическое, s – выборочное среднее квадратическое отклонение. Термин «асимптотические доверительные границы» означает, что вероятности
P{(M(X))H < M(X)}, P{(M(X))B > M(X)},
P{(M(X))H < M(X) < (M(X))B}
стремятся к , и γ соответственно при n → ∞, но, вообще говоря, не равны этим значениям при конечных n. Практически асимптотические доверительные границы дают достаточную точность при n порядка 10.
Предыдущая |