Бизнес-портал для руководителей, менеджеров, маркетологов, экономистов и финансистов

Поиск на AUP.Ru


Объявления

А.И. Орлов
Математика случая
Вероятность и статистика – основные факты

Учебное пособие. М.: МЗ-Пресс, 2004.

Предыдущая

6. Некоторые типовые задачи прикладной статистики и методы их решения

Непараметрическое оценивание математического ожидания

В непараметрической постановке оценивают либо характеристики случайной величины (математическое ожидание, дисперсию, коэффициент вариации), либо ее функцию распределения, плотность и т.п. Так, в силу закона больших чисел выборочное среднее арифметическое  является состоятельной оценкой математического ожидания М(Х) (при любой функции распределения F(x) результатов наблюдений, для которой математическое ожидание существует). С помощью центральной предельной теоремы определяют асимптотические доверительные границы

(М(Х))Н = , (М(Х))В = .

где γ – доверительная вероятность,  - квантиль порядка  стандартного нормального распределения N(0;1) с нулевым математическим ожиданием и единичной дисперсией,  - выборочное среднее арифметическое, s – выборочное среднее квадратическое отклонение. Термин «асимптотические доверительные границы» означает, что вероятности

P{(M(X))H < M(X)}, P{(M(X))B > M(X)},

P{(M(X))H < M(X) < (M(X))B}

стремятся к ,  и γ соответственно при n → ∞, но, вообще говоря, не равны этим значениям при конечных n. Практически асимптотические доверительные границы дают достаточную точность при n порядка 10.

Предыдущая

Объявления