А.И.
Орлов
Математика случая
Вероятность и статистика – основные факты
Учебное пособие. М.: МЗ-Пресс, 2004.
Предыдущая |
6. Некоторые типовые задачи прикладной статистики и методы их решения
Статистические данные и прикладная статистика
Под прикладной статистикой обычно понимают часть математической статистики, посвященную методам обработки реальных статистических данных, а также соответствующее математическое и программное обеспечение. Таким образом, чисто математические задачи не включают в прикладную статистику. В последние десятилетия термин «математическая статистика» все чаще применяют для обозначения чисто математической дисциплины, которая изучает свойства математических объектов и структур, введенных в классической статистике ранее середины ХХ века. При таком понимании прикладная статистика – самостоятельная научно-практическая дисциплина, не имеющая пересечения с математической статистикой. Прикладную статистику и статистические методы в целом можно отнести к кибернетике или к прикладной математике.
Под статистическими данными понимают числовые или нечисловые значения контролируемых параметров (признаков) исследуемых объектов, которые получены в результате наблюдений (измерений, анализов, испытаний, опытов и т.д.) определенного числа признаков, у каждой единицы, вошедшей в исследование. Способы получения статистических данных и объемы выборок устанавливают, исходя из постановок конкретной прикладной задачи на основе методов математической теории планирования эксперимента.
Результат наблюдения xi исследуемого признака Х (или совокупности исследуемых признаков Х) у i – ой единицы выборки отражает количественные и/или качественные свойства обследованной единицы с номером i (здесь i = 1, 2, … , n, где n – объем выборки). Деление прикладной статистики на направления соответственно виду обрабатываемых результатов наблюдений (т.е. на статистику случайных величин, многомерный статистический анализ, статистику временных рядов и статистику объектов нечисловой природы) обсуждалось выше.
Результаты наблюдений x1, x2,…, xn, где xi – результат наблюдения i – ой единицы выборки, или результаты наблюдений для нескольких выборок, обрабатывают с помощью методов прикладной статистики, соответствующих поставленной задаче. Используют, как правило, аналитические методы, т.е. методы, основанные на численных расчетах (объекты нечисловой природы при этом описывают с помощью чисел). В отдельных случаях допустимо применение графических методов (визуального анализа).
Количество разработанных к настоящему времени методов обработки данных весьма велико. Они описаны в сотнях тысяч книг и статей, а также в стандартах и других нормативно-технических и инструктивно-методических документах.
Многие методы прикладной статистики требуют проведения трудоемких расчетов, поэтому для их реализации необходимо использовать компьютеры. Программы расчетов на ЭВМ должны соответствовать современному научному уровню. Однако для единичных расчетов при отсутствии соответствующего программного обеспечения успешно используют микрокалькуляторы.
Предыдущая |