Орлов А.И.
Прикладная статистика
М.: Издательство «Экзамен», 2004.
Предыдущая |
Часть 1. Фундамент прикладной статистики
1.4. Теоретическая база прикладной статистики
Контрольные вопросы и задачи
1. Почему в прикладной статистике необходимо использовать теоремы о наследовании сходимости?
2. Примените метод линеаризации для изучения распределения выборочной дисперсии (исходя из асимптотической нормальности при n → ∞ среднего арифметического двумерных векторов (Xk, (Xk)2), k = 1, 2, … , n).
3. Как применяется в прикладной статистике принцип инвариантности?
4. Как с точки зрения нечетких множеств можно интерпретировать вероятность накрытия определенной точки случайным множеством?
5. На множестве Y = {y1,y2,y3} задано нечеткое множество B с функцией принадлежности μB(y), причем μB(y1) = 0,1, μB(y2) = 0,2, μB(y3) = 0,3. Постройте случайное множество А так, чтобы Proj A = B.
6. На множестве Y = {y1,y2,y3} задано нечеткое множество B с функцией принадлежности μB(y), причем μB(y1) = 0,2, μB(y2) = 0,1, μB(y3) = 0,5. Постройте случайное множество А так, чтобы Proj A = B.
7. На множестве Y = {y1,y2,y3} задано нечеткое множество B с функцией принадлежности μB(y), причем μB(y1) = 0,5, μB(y2) = 0,4, μB(y3) = 0,7. Постройте случайное множество А так, чтобы Proj A = B.
8. На множестве Y = {y1,y2,y3} задано нечеткое множество B с функцией принадлежности μB(y), причем μB(y1) = 0,3, μB(y2) = 0,2, μB(y3) = 0,1. Постройте случайное множество А так, чтобы Proj A = B.
9. В чем состоит основная идея принципа уравнивания погрешностей?
Предыдущая |