Орлов А.И.
Нечисловая статистика
М.: МЗ-Пресс, 2004.
Впервые систематически рассматривается одна из четырех основных областей современной прикладной математической статистики - статистика нечисловых данных. Она порождена в 70-х годах ХХ в. потребностями прикладных социально-экономических, технических и медико-биологических исследований. Основой ее математического аппарата является использование расстояний между объектами нечисловой природы и решений оптимизационных задач, а не операций суммирования данных, как в других областях статистики. В книге рассмотрены основные виды нечисловых данных и особенности их статистического анализа. Большое внимание уделяется проблемам практического применения методов и результатов нечисловой статистики.
Книга предназначена для студентов, преподавателей и специалистов, заинтересованных в применении современных статистических методов, разработчиков таких методов и соответствующего программного обеспечения. Она представляет интерес также для исследователей в области прикладной и математической статистики, анализа данных, методов оптимизации, математического моделирования.
ОГЛАВЛЕНИЕ
Введение. Нечисловая статистика - основа статистических методов
В-1. О развитии статистических методов
В-2. Структура нечисловой статистики
Глава 1. Нечисловые статистические данные
1.1. Количественные и категоризованные данные
1.4. Вероятностные модели порождения нечисловых данных
1.5. Нечеткие множества – частный случай нечисловых данных
1.6. Сведение нечетких множеств к случайным
1.7. Данные и расстояния в пространствах произвольной природы
1.8. Аксиоматическое введение расстояний и показателей различия
Глава 2. Статистические методы в пространствах произвольной природы
2.1. Эмпирические и теоретические средние
2.3. Экстремальные статистические задачи
2.5. Непараметрические оценки плотности
2.6. Статистики интегрального типа
2.7. Методы восстановления зависимостей
Глава 3. статистика нечисловых данных конкретных видов
3.1. Инвариантные алгоритмы и средние величины
3.2. Теория случайных толерантностей
3.3. Метод проверки гипотез по совокупности малых выборок
3.6. Статистика нечетких множеств
3.7. Статистика нечисловых данных в экспертных оценках
Глава 4. Статистика интервальных данных
4.1. Основные идеи статистики интервальных данных
4.2. Интервальные данные в задачах оценивания
4.3. Интервальные данные в задачах проверки гипотез
4.4. Линейный регрессионный анализ интервальных данных
4.5. Интервальный дискриминантный анализ
4.6. Интервальный кластер-анализ
4.7. Интервальные данные в инвестиционном менеджменте
4.8. Статистика интервальных данных в прикладной статистике
Приложение 1. Теоретическая база нечисловой статистики
П-2. Центральные предельные теоремы
П-3. Теоремы о наследовании сходимости
Уважаемые читатели!
Предлагаемая элкетронная версия книги входит в новую серию «Статистические методы» издательства «МЗ-Пресс». В этой серии будут выпускаться научные монографии по различным теоретическим и прикладным направлениям статистических методов, учебники и учебные пособия, написанные ведущими исследователями. Основная цель серии – выпуск научных монографий, являющихся одновременно учебниками и позволяющих студентам и специалистам выйти на передовой фронт современных исследований.
Книги серии посвящены прикладной статистике и другим статистическим методам обработки и анализа данных, а также применению статистических методов в технических, социально-экономических, медицинских, исторических и иных исследованиях. Они окажутся полезными для инженеров, экономистов, менеджеров, социологов, врачей, всех научных работников и специалистов, чья профессиональная деятельность связаны с обработкой и анализом данных.
Редакционный совет серии создан Правлением Российской ассоциации статистических методов (учреждена в 1990 г.). По оценке Правления, выпуск серии «Статистические методы» позволит заметно повысить научный уровень и практическую значимость отечественных научных исследований, прикладных разработок и преподавания в области статистических методов.
Надеемся, что новая серия привлечет внимание и будет полезна как студентов и преподавателям, так и профессиональным исследователям. Желаем всем потенциальным читателям найти что-то полезное для себя.