А.И.
Орлов
Математика случая
Вероятность и статистика – основные факты
Учебное пособие. М.: МЗ-Пресс, 2004.
Предыдущая |
4. Случайные величины и их распределения
Распределение Пуассона
Третье широко используемое дискретное распределение – распределение Пуассона. Случайная величина Y имеет распределение Пуассона, если
,
где λ – параметр распределения Пуассона, и P(Y=y)=0 для всех прочих y (при y=0 обозначено 0! =1). Для распределения Пуассона
M(Y) = λ, D(Y) = λ.
Это распределение названо в честь французского математика С.Д.Пуассона (1781-1840), впервые получившего его в 1837 г. Распределение Пуассона является предельным случаем биномиального распределения, когда вероятность р осуществления события мала, но число испытаний n велико, причем np = λ. Точнее, справедливо предельное соотношение
Поэтому распределение Пуассона (в старой терминологии «закон распределения») часто называют также «законом редких событий».
Распределение Пуассона возникает в теории потоков событий (см. выше). Доказано, что для простейшего потока с постоянной интенсивностью Λ число событий (вызовов), происшедших за время t, имеет распределение Пуассона с параметром λ = Λt. Следовательно, вероятность того, что за время t не произойдет ни одного события, равна e-Λt, т.е. функция распределения длины промежутка между событиями является экспоненциальной.
Распределение Пуассона используется при анализе результатов выборочных маркетинговых обследований потребителей, расчете оперативных характеристик планов статистического приемочного контроля в случае малых значений приемочного уровня дефектности, для описания числа разладок статистически управляемого технологического процесса в единицу времени, числа «требований на обслуживание», поступающих в единицу времени в систему массового обслуживания, статистических закономерностей несчастных случаев и редких заболеваний, и т.д.
Описание иных параметрических семейств дискретных распределений и возможности их практического использования рассматриваются в обширной (более миллиона названий статей и книг на десятках языков) литературе по вероятностно-статистическим методам.
Предыдущая |