А.И.
Орлов
Математика случая
Вероятность и статистика – основные факты
Учебное пособие. М.: МЗ-Пресс, 2004.
Предыдущая |
4. Случайные величины и их распределения
Логарифмически нормальные распределения
Случайная величина Х имеет логарифмически нормальное распределение, если случайная величина Y = lg X имеет нормальное распределение. Тогда Z = ln X = 2,3026…Y также имеет нормальное распределение N(a1,σ1), где ln X - натуральный логарифм Х. Плотность логарифмически нормального распределения такова:
Из центральной предельной теоремы следует, что произведение X = X1X2…Xn независимых положительных случайных величин Xi, i = 1, 2,…, n, при больших n можно аппроксимировать логарифмически нормальным распределением. В частности, мультипликативная модель формирования заработной платы или дохода приводит к рекомендации приближать распределения заработной платы и дохода логарифмически нормальными законами. Для России эта рекомендация оказалась обоснованной - статистические данные подтверждают ее.
Имеются и другие вероятностные модели, приводящие к логарифмически нормальному закону. Классический пример такой модели дан А.Н.Колмогоровым [10], который из физически обоснованной системы постулатов вывел заключение о том, что размеры частиц при дроблении кусков руды, угля и т.п. на шаровых мельницах имеют логарифмически нормальное распределение.
Предыдущая |