А.И.
Орлов
Математика случая
Вероятность и статистика – основные факты
Учебное пособие. М.: МЗ-Пресс, 2004.
Предыдущая |
4. Случайные величины и их распределения
Центральная предельная теорема (общий случай)
Как уже отмечалось, нормальные распределения в настоящее время часто используют в вероятностных моделях в различных прикладных областях. В чем причина такой широкой распространенности этого двухпараметрического семейства распределений? Она проясняется следующей теоремой.
Центральная предельная теорема (для разнораспределенных слагаемых). Пусть X1, X2,…, Xn,… - независимые случайные величины с математическими ожиданиями М(X1), М(X2),…, М(Xn), … и дисперсиями D(X1), D(X2),…, D(Xn), … соответственно. Пусть
Тогда при справедливости некоторых условий, обеспечивающих малость вклада любого из слагаемых в Un,
для любого х.
Условия, о которых идет речь, не будем здесь формулировать. Их можно найти в специальной литературе (см., например, [6]). «Выяснение условий, при которых действует ЦПТ, составляет заслугу выдающихся русских ученых А.А.Маркова (1857-1922) и, в особенности, А.М.Ляпунова (1857-1918)» [9, с.197].
Центральная предельная теорема показывает, что в случае, когда результат измерения (наблюдения) складывается под действием многих причин, причем каждая из них вносит лишь малый вклад, а совокупный итог определяется аддитивно, т.е. путем сложения, то распределение результата измерения (наблюдения) близко к нормальному.
Иногда считают, что для нормальности распределения достаточно того, что результат измерения (наблюдения) Х формируется под действием многих причин, каждая из которых оказывает малое воздействие. Это заключение неверно. Важно, как эти причины действуют. Если аддитивно – то Х имеет приближенно нормальное распределение. Если мультипликативно (т.е. действия отдельных причин перемножаются, а не складываются), то распределение Х близко не к нормальному, а к т.н. логарифмически нормальному, т.е. не Х, а lg X имеет приблизительно нормальное распределение. Если же нет оснований считать, что действует один из этих двух механизмов формирования итогового результата (или какой-либо иной вполне определенный механизм), то про распределение Х ничего определенного сказать нельзя.
Из сказанного вытекает, что в конкретной прикладной задаче нормальность результатов измерений (наблюдений), как правило, нельзя установить из общих соображений, ее следует проверять с помощью статистических критериев. Или же использовать непараметрические статистические методы, не опирающиеся на предположения о принадлежности функций распределения результатов измерений (наблюдений) к тому или иному параметрическому семейству.
Предыдущая |