Бизнес-портал для руководителей, менеджеров, маркетологов, экономистов и финансистов

Поиск на AUP.Ru


Объявления

А.И. Орлов
Эконометрика
Учебник. М.: Издательство "Экзамен", 2002.

Предыдущая

Глава 8. Статистика нечисловых данных

8.5. Непараметрические оценки плотности в пространствах произвольной природы

Математический аппарат статистики объектов нечисловой природы основан не на свойстве линейности пространства и использовании разнообразных сумм элементов выборок и функций от них, как в классической статистике, а на применении показателей различия, мер близости, метрик, поэтому существенно отличается от классического. В статистике нечисловых данных выделяют общую теорию и статистику в конкретных пространствах нечисловой природы (например, статистику ранжировок). В общей теории есть два основных сюжета. Один связан со средними величинами и асимптотическим поведением решений экстремальных статистических задач, второй - с непараметрическими оценками плотности. Первый сюжет только что рассмотрен, второму посвящена заключительная часть настоящей главы.

Понятие плотности в пространстве произвольной природы Х требует специального обсуждения. В пространстве Х должна быть выделена некоторая специальная мера , относительно которой будут рассматриваться плотности, соответствующие другим мерам, например, мере , задающей распределение вероятностей некоторого случайного элемента . В таком случае (А) = Р(А) для любого случайного события А. Плотность f(x), соответствующая мере  - это такая функция, что

для любого случайного события А. Для случайных величин и векторов мера  - это объем множества А, в математических терминах - мера Лебега. Для дискретных случайных величин и элементов со значениями в конечном множестве Х в качестве меры  естественно использовать считающую меру, которая событию А ставит в соответствие число его элементов. Используют также нормированную случайную меру, когда число точек в множестве А делят на число точек во всем пространстве Х. В случае считающей меры значение плотности в точке х совпадает с вероятностью попасть в точку х, т.е. f(x) = Р(ξ = х). Таким образом, с рассматриваемой точки зрения стирается грань между понятиями «плотность вероятности» и «вероятность (попасть в точку)».

   Как могут быть использованы непараметрические оценки плотности распределения вероятностей в пространствах нечисловой природы? Например, для решения задач классификации (диагностики, распознавания образов - см. главу 5). Зная плотности распределения классов, можно решать основные задачи диагностики - как задачи выделения кластеров, так и задачи отнесения вновь поступающего объекта к одному из диагностических классов. В задачах кластер-анализа можно находить моды плотности и принимать их за центры кластеров или за начальные точки итерационных методов типа k-средних или динамических сгущений. В задачах собственно диагностики (дискриминации, распознавания образов с учителем) можно принимать решения о диагностике объектов на основе отношения плотностей, соответствующих классам. При неизвестных плотностях представляется естественным использовать их состоятельные оценки.

   Методы оценивания плотности вероятности в пространствах общего вида предложены и первоначально изучены в работе [31]. В частности, в задачах диагностики объектов нечисловой природы предлагаем использовать непараметрические ядерные оценки плотности типа Парзена - Розенблатта (этот вид оценок и его название впервые были введены в статье [31] ). Они имеют вид:

 где К:  - так называемая ядерная функция, x1, x2, …, xn  X - выборка, по которой оценивается плотность, d(xi , x) - показатель различия (метрика, расстояние, мера близости) между элементом выборки xi и точкой x, в которой оценивается плотность, последовательность hn показателей размытости такова, что hn 0 и nhn при , а  - нормирующий множитель, обеспечивающий выполнение условия нормировки (интеграл по всему пространству от непараметрической оценки плотности fn(x) по мере  должен равняться 1). Ранее американские исследователи Парзен и Розенблатт использовали подобные статистики в случае  с d(xi , x) = xi - x .

   Введенные описанным образом ядерные оценки плотности - частный случай так называемых линейных оценок, также впервые предложенных в работе [31]. В теоретическом плане они выделяются тем, что удается получать результаты такого же типа, что в классическом одномерном случае, но, разумеется, с помощью совсем иного математического аппарата.

   Свойства непараметрических ядерных оценок плотности. Рассмотрим выборку со значениями в некотором пространстве произвольного вида. В этом пространстве предполагаются заданными показатель различия d и мера . Одна из основных идей рассматриваемого подхода состоит в том, чтобы согласовать их между собой. А именно, на их основе построим новый показатель различия d1 , так называемый "естественный", в терминах которого проще формулируются свойства непараметрической оценки плотности. Для этого рассмотрим шары  радиуса t>0 и их меры Fx(t) = (Lt(x)). Предположим, что Fx(t) как функция t при фиксированном x непрерывна и строго возрастает. Введем функцию d1(x,y)= Fx(d(x,y)). Это - монотонное преобразование показателя различия или расстояния, а потому d1(x,y) - также показатель различия (даже если d - метрика, для d1 неравенство треугольника может быть не выполнено). Другими словами, d1(x,y), как и d(x,y), можно рассматривать как показатель различия (меру близости) между x и y.

   Для вновь введенного показателя различия d1(x,y) введем соответствующие шары . Поскольку обратная функция F -1x(t) определена однозначно, то , где T = F -1x(t). Следовательно, справедлива цепочка равенств F1x(t) = (L1t(x)) = (LT(x)) = Fx(F -1x(t)) = t.

   Переход от d к d1 напоминает классическое преобразование, использованное Н.В. Смирновым при изучении непараметрических критериев согласия и однородности, а именно, преобразование , переводящее случайную величину  с непрерывной функцией распределения F(x) в случайную величину , равномерно распределенную на отрезке [0,1]. Оба рассматриваемых преобразования существенно упрощают дальнейшие рассмотрения. Преобразование d1= Fx(d) зависит от точки x, что не влияет на дальнейшие рассуждения, поскольку ограничиваемся изучением сходимости в отдельно взятой точке.

   Функцию d1(x,y), для которой мера шара радиуса t равна t, называем в соответствии с работой [31] «естественным показателем различия» или «естественной метрикой». В случае конечномерного пространства Rk и евклидовой метрики d имеем d1(x,y) = ck d k (x,y), где ck - объем шара единичного радиуса в Rk .

   Поскольку можно записать, что

,

где

,

 то переход от одного показателя различия к другому, т.е. от d к d1 соответствует переходу от одной ядерной функции к другой, т.е. от K к K1. Выгода от такого перехода заключается в том, что утверждения о поведении непараметрических оценок плотности приобретают более простую формулировку.

   Теорема 5. Пусть d - естественная метрика, плотность f непрерывна в точке x и ограничена на всем пространстве X , причем f(x)>0, ядерная функция K(u) удовлетворяет простым условиям регулярности

.

Тогда n(hn ,x) = nhn , оценка fn(x) является состоятельной, т.е. fn(x) f(x) по вероятности при n и, кроме того,

   Теорема 5 доказывается методами, развитыми в работе [31]. Однако остается открытым вопрос о скорости сходимости ядерных оценок, в частности, о поведении величины n = M(fn(x)-f(x))2 - среднего квадрата ошибки, и об оптимальном выборе показателей размытости hn . Для того, чтобы продвинуться в решении этого вопроса, введем новые понятия. Для случайного элемента X() со значениями в X рассмотрим т.н. круговое распределение G(x,t) = P{d(X(), x)<t} и круговую плотность g(x,t)= G't(x,t).

   Теорема 6. Пусть ядерная функция K(u) непрерывна и финитна, т.е. существует число E такое, что K(u)=0 при u>E. Пусть круговая плотность является достаточно гладкой, т.е. допускает разложение


при некотором k, причем остаточный член равномерно ограничен на [0,hE]. Пусть

Тогда

   Доказательство теоремы 6 проводится с помощью разработанной в статистике объектов нечисловой природы математической техники, образцы которой представлены, в частности, в работе [31]. Если коэффициенты при основных членах в правой части последней формулы не равны 0, то величина n достигает минимума, равного при  Эти выводы совпадают с классическими результатами, полученными ранее рядом авторов для весьма частного случая прямой X = R1 (см., например, монографию [32, с.316]). Заметим, что для уменьшения смещения оценки приходится применять знакопеременные ядра K(u).

   Непараметрические оценки плотности в конечных пространствах. В случае конечных пространств естественных метрик не существует. Однако можно получить аналоги теорем 5 и 6, переходя к пределу не только по объему выборки n, но и по новому параметру дискретности m.

   Рассмотрим некоторую последовательность Xm , m = 1,2,…- конечных пространств. Пусть в Xm заданы показатели различия dm . Будем использовать нормированные считающие меры  ставящие в соответствие каждому подмножеству А долю элементов всего пространства Xm , входящих в А. Как и ранее, рассмотрим как функцию t объем шара радиуса t, т.е. Введем аналог естественного показателя различия  Наконец, рассмотрим аналоги преобразования Смирнова  Функции , в отличие от ситуации предыдущего раздела, уже не совпадают тождественно с t, они кусочно-постоянны и имеют скачки в некоторых точках ti , i =1,2,…, причем в этих точках

   Теорема 7. Пусть точки скачков равномерно сближаются, т.е.  при  (другими словами,-t| при ). Тогда существует последовательность параметров дискретности mn такая, что при предельном переходе  справедливы заключения теорем 5 и 6.

   Пример 1. Пространство  всех подмножеств конечного множества  из m элементов допускает (см. монографию [3]) аксиоматическое введение метрики  где  - символ симметрической разности множеств. Рассмотрим непараметрическую ядерную оценку плотности типа Парзена - Розенблатта

где  - функция нормального стандартного распределения. Можно показать, что эта оценка удовлетворяет условиям теоремы 7 с

   Пример 2. Рассмотрим пространство функций  определенных на конечном множестве , со значениями в конечном множестве . Это пространство можно интерпретировать как пространство нечетких множеств (см. о нечетких множествах, напаример, монографии [3,10]), а именно, Yr - носитель нечеткого множества, а Zq - множество значений функции принадлежности. Очевидно, число элементов пространства Xm равно (q+1)r . Будем использовать расстояние  Непараметрическая оценка плотности имеет вид:

Если , то при > выполнены условия теоремы 7, а потому справедливы теоремы 5 и 6.

   Пример 3. Рассматривая пространства ранжировок m объектов, в качестве расстояния d(A,B) между ранжировками A и B примем минимальное число инверсий, необходимых для перехода от A к B. Тогда max(ti -ti-1) не стремится к 0 при , условия теоремы 7 не выполнены.

   Пример 4. В прикладных работах наиболее распространенный пример объектов нечисловой природы – вектор разнотипных данных: реальный объект описывается вектором, часть координат которого - значения количественных признаков, а часть - качественных (номинальных и порядковых). Для пространств разнотипных признаков, т.е. декартовых произведений непрерывных и дискретных пространств, возможны различные постановки. Пусть, например, число градаций качественных признаков остается постоянным. Тогда непараметрическая оценка плотности сводится к произведению частоты попадания в точку в пространстве качественных признаков на классическую оценку Парзена-Розенблатта в пространстве количественных переменных. В общем случае расстояние d(x,y) можно, например, рассматривать как сумму трех расстояний. А именно, евклидова расстояния d1 между количественными факторами, расстояния d2 между номинальными признаками (d2(x,y) = 0, если x = y, и d2(x,y) = 1, если ) и расстояния d3 между порядковыми переменными (если x и y - номера градаций, то d3(x,y) = |x - y|). Наличие количественных факторов приводит к непрерывности и строгому возрастанию функции Fmx(t), а потому для непараметрических оценок плотности в пространствах разнотипных признаков верны теоремы 5 - 6.

   Статистика объектов нечисловой природы как часть эконометрики продолжает бурно развиваться. Увеличивается количество ее практически полезных применений при анализе конкретных экономических данных - в маркетинговых исследованиях, контроллинге, при управлении предприятием и др.

Предыдущая

Объявления